Why does Mookie Betts get so much more out of each swing than anybody else?

Each swing of Mookie Betts’ bat produces more hits, and far more total bases, than anybody else’s. Have a look:

Hits per swing leaders as of mid August 2018
rank Name H/Swing
1 Mookie Betts .197
2 Andrelton Simmons .185
3 Nick Markakis .177
4 Michael Brantley .175
5 Jose Altuve .172
6 Ben Zobrist .171
7 Joe Mauer .169
8 Daniel Murphy .164
9 Tony Kemp .163
10 Jesse Winker .163
11 Jean Segura .163
12 Christian Yelich .162
13 Jose Martinez .160
14 David Freese .160
15 Lorenzo Cain .160
16 DJ LeMahieu .160
17 David Fletcher .157
18 Alex Bregman .157
19 Buster Posey .156
20 Isiah Kiner-Falefa .156
Total bases per swing leaders as of mid August 2018
rank Name TB/Swing
1 Mookie Betts .375
2 Matt Carpenter .313
3 Jose Ramirez .309
4 Mike Trout .308
5 J.D. Martinez .294
6 Max Muncy .292
7 Alex Bregman .288
8 Steve Pearce .282
9 Ryan Zimmerman .278
10 Juan Soto .276
11 Ronald Acuna .275
12 Nick Markakis .274
13 Manny Machado .274
14 Eugenio Suarez .274
15 Francisco Lindor .273
16 Michael Brantley .273
17 Christian Yelich .270
18 Nolan Arenado .270
19 Aaron Judge .269
20 Javier Baez .265

(My apologies for the use of mid-August numbers. It has taken me a while to complete this article due to lack of available time.)

On the total base per swing list, the difference between Betts and second place is bigger than the difference between second place and 37th place.

What’s especially interesting to me is that if you look at the top 11 names on each list, you see that they’re entirely different lists, except for the one name, Betts, at the top of each list. That’s remarkable when you consider the seemingly opposed approaches to getting on one list versus getting on the other. The hits per swing list is full of guys who’ve optimized their games for making contact, and perhaps aiming the ball to “hit ’em where they ain’t”. The total bases per swing list is full of guys who’ve optimized their game for impacting the ball, driving it hard and presumably with a good launch angle. These differing approaches display for us a tradeoff that exists throughout sports – the tradeoff between accuracy and power. Think of a pitcher who overthrows a fastball and loses control of it. Think of a bowler who might slow down his roll to be more accurate, or speed up his roll to get more power. You can surely think of some other examples.

Betts appears to be defying that tradeoff, excelling at both accuracy and power with each swing of his bat. How does he do it?

An attempt to break down the skills that contribute to turning swings into hits

To get an idea, let’s try breaking down the different skills that would go into producing high numbers for bases per swing.

Consider four main divisions: pitch recognition, accuracy of swing, power in swing, and sprinting speed. (A fifth, park factors, is relevant, but not one I’ll spend much time on in this article. It does come out at the end though, for Betts.)

This second division, “accuracy of swing”, can be further subdivided into three dimensions: timing (depth), horizontal accuracy (width), and vertical accuracy (height).

We can break down power into some components, too, but we’ll do that later to keep things from getting too confusing.

Which results do each of these skills affect?
If your pitch recognition is poor, you’ll have a lot of swings and misses, and possibly a lot of bad contact. Your HpS (Hits per swing) and TBpS (Total Bases per swing) will both suffer.

If your timing is off, you’ll be either early or late. It can add to your swings and misses, but perhaps the best indication of poor timing will be hitting a lot of foul balls relative to balls hit fair. While this doesn’t necessarily hurt you as a hitter (it works great for Mike Trout), it will lower your HpS and TBpS.

If your vertical accuracy is off, that brings some swings and misses, but mostly popups and weak ground balls. This could be hard to separate from poor pitch recognition. I’m assuming poor pitch recognition is more closely associated with no contact, and poor vertical accuracy is more associated with poor contact.

If your horizontal accuracy is off, you’ll still hit the ball, but you won’t hit it on the sweet spot. This will sap your power, because it causes vibrations and bending in the bat that don’t happen when the ball hits the sweet spot. That bending sends energy away from the point of contact, so there is less energy stored in the compression of the ball and bat at that point of contact. Thus less energy rebounds back into the ball, and it leaves the bat with less velocity.

I had previously written in this article that putting more strength behind a swing would make up for some horizontal inaccuracy, but according to this David Kagan article, that’s not true. After a lot of thought about it, I agree with that assessment.

So apart from horizontal accuracy, power is increased by faster bat speed, and having a denser or heavier bat in the barrel. Since bats all appear to be at the regulation maximum width, and most players use the already dense wood maple for their bats, the only real variation in bats today will be in bat length. A longer bat will be harder to control, but will have a bigger sweet spot that moves at a greater speed due to being farther from the bat’s pivot point (near the hands). Players with the forearm strength to control a longer bat will generate more power using one.

Players without as much forearm strength must generate momentum by increasing bat speed. This is also increased by strength, but a not-as-strong player can still match stronger players in terms of strength put into the swing by being effective at involving their strongest muscles, those in their legs and core. It’s easier said than done. It takes a lot of whole-body coordination and skill. Mookie Betts has always been known for having exactly that.

Basic skills Betts is known for

What else of these things is Betts known for? Well, he was a standout in neuroscouting tests done in his prospect days, tests that try to measure how quickly and accurately a player recognizes pitches. And this article speaks to his and Mike Trout’s excellence at swinging at strikes and not at balls, with Betts in the top 1% of players for both. So there’s already good evidence of great pitch recognition on his part.

Commentators frequently speak of his quick hands. So he’s got a reputation for bat speed, which means power when combined with horizontal accuracy or strength of swing.

So to summarize, out of bat speed, strength of swing, pitch recognition, timing, vertical accuracy, and horizontal accuracy, Betts has some reputation for the first three, and we don’t know about the last three. So, let’s look at some stats!

The Numbers

These numbers are taken from mid-August. They include the 397 players who, at that point, had at least 100 plate appearances and 60 “batted ball events” (batted balls that produce a result, such as a hit, out, or error; this includes some foul balls).

Not swinging and missing

We’ve already referenced how Mookie Betts is in the top 1% of players at not swinging at balls, and at rate of swinging at strikes, which may be the best indication that he doesn’t get fooled. But having a low rate of swings and misses should more directly impact his TBpS and HpS numbers, so let’s see the data on misses per swing for the two groups:

Misses per swing, for TBpS leaders
Name Miss per Sw rank pctl
Mookie Betts 15.0% 33 91.9%
Matt Carpenter 23.8% 181 54.5%
Jose Ramirez 13.5% 15 96.5%
Mike Trout 18.9% 76 81.1%
J.D. Martinez 28.5% 293 26.3%
Max Muncy 28.8% 301 24.2%
Alex Bregman 13.8% 21 94.9%
Steve Pearce 23.9% 182 54.3%
Ryan Zimmerman 25.8% 234 41.2%
Juan Soto 22.4% 144 63.9%
Ronald Acuna 26.3% 246 38.1%
Nick Markakis 11.3% 5 99.0%
Manny Machado 23.0% 155 61.1%
Eugenio Suarez 24.1% 190 52.3%
Francisco Lindor 18.8% 75 81.3%
Michael Brantley 11.6% 6 98.7%
Christian Yelich 24.3% 196 50.8%
Nolan Arenado 24.6% 204 48.7%
Aaron Judge 36.3% 388 2.3%
Javier Baez 32.4% 354 10.9%
Misses per swing, for HpS leaders
Name Miss per Sw rank pctl
Mookie Betts 15.0% 33 91.9%
Andrelton Simmons 12.4% 10 97.7%
Nick Markakis 11.3% 5 99.0%
Michael Brantley 11.6% 6 98.7%
Jose Altuve 18.0% 66 83.6%
Ben Zobrist 14.7% 31 92.4%
Joe Mauer 14.5% 28 93.2%
Daniel Murphy 10.0% 1 100.0%
Tony Kemp 16.0% 43 89.4%
Jesse Winker 15.3% 36 91.2%
Jean Segura 12.2% 8 98.2%
Christian Yelich 24.3% 196 50.8%
Jose Martinez 19.4% 83 79.3%
David Freese 23.0% 158 60.4%
Lorenzo Cain 18.7% 74 81.6%
DJ LeMahieu 14.5% 26 93.7%
David Fletcher 10.5% 2 99.7%
Alex Bregman 13.8% 21 94.9%
Buster Posey 13.6% 18 95.7%
Isiah Kiner-Falefa 14.6% 30 92.7%

Of the Hits per Swing leaders, 14 of the 20 are in the top 10% for not missing when swinging. Christian Yelich and David Freese are the anomalies in that group. The ability to not be fooled appears to be one of the top skills that will help a player become a HpS leader. But notice that even among those in the top 10% for making contact, about two thirds are not on this list. So clearly there are other skills that will help.

For the Total Bases per Swing leaders, however, it’s all across the board. One is in the bottom 3%; four are in the bottom 30%; and only seven are in the top 36%. However, five of the twenty are in the top 10%. The ability to make contact does appear to have a positive impact on a player’s placement on the TBpS leader list, but that positive impact seems small; there have to be some other skill or skills that make a much stronger impact on TBpS. You likely already have an idea of what some of those other things are, but I’ll be getting to those later, so I won’t mention them just yet.

Except for Christian Yelich, all five guys who appear on both the TBpS and HpS leader lists (names in bold italics) have high rates of contact. (What’s up with Christian Yelich?)

Given his high percentile for not swinging and missing (top 9% of all players), this is clearly a skill that is helping Mookie Betts appear on the HpS list. Given how few people on the TBpS list have a high rate of contact, it ought to be a separator for him there.

Timing – keeping it fair

Now let’s look at balls put in play (fair territory) as a ratio of swings that made contact. So we divide balls in play by the sum of balls in play and foul balls. Excellence at this probably indicates the player has good timing, though a player with an all-fields approach, or with an approach of intentionally fouling off difficult two-strike pitches, might have good timing and still show poorly here.

Balls in play per contact made, for TBpS leaders
Name IP p Cont rank pctl
Mookie Betts 56.2% 23 94.4%
Matt Carpenter 51.0% 155 61.1%
Jose Ramirez 49.0% 232 41.7%
Mike Trout 45.5% 329 17.2%
J.D. Martinez 45.8% 321 19.2%
Max Muncy 48.9% 238 40.2%
Alex Bregman 56.0% 31 92.4%
Steve Pearce 52.1% 103 74.2%
Ryan Zimmerman 58.6% 13 97.0%
Juan Soto 50.3% 171 57.1%
Ronald Acuna 45.1% 342 13.9%
Nick Markakis 54.8% 45 88.9%
Manny Machado 55.1% 41 89.9%
Eugenio Suarez 49.5% 209 47.5%
Francisco Lindor 50.8% 161 59.6%
Michael Brantley 60.6% 6 98.7%
Christian Yelich 51.4% 135 66.2%
Nolan Arenado 48.9% 240 39.6%
Aaron Judge 49.3% 215 46.0%
Javier Baez 52.0% 113 71.7%
Balls in play per contact made, for HpS leaders
Name IP p Cont rank pctl
Mookie Betts 56.2% 23 94.4%
Andrelton Simmons 66.8% 1 100.0%
Nick Markakis 54.8% 45 88.9%
Michael Brantley 60.6% 6 98.7%
Jose Altuve 55.8% 36 91.2%
Ben Zobrist 56.5% 22 94.7%
Joe Mauer 61.8% 4 99.2%
Daniel Murphy 54.3% 56 86.1%
Tony Kemp 60.4% 7 98.5%
Jesse Winker 54.3% 54 86.6%
Jean Segura 53.0% 82 79.5%
Christian Yelich 51.4% 135 66.2%
Jose Martinez 54.2% 59 85.4%
David Freese 54.2% 57 85.9%
Lorenzo Cain 53.0% 79 80.3%
DJ LeMahieu 59.1% 11 97.5%
David Fletcher 61.3% 5 99.0%
Alex Bregman 56.0% 31 92.4%
Buster Posey 53.7% 67 83.3%
Isiah Kiner-Falefa 57.0% 19 95.5%

Of the Hits per Swing leaders, 11 of the 20 are in the top 10%, and all but one are in the top 21%. (The one who isn’t: Christian Yelich. Really, what is up with Christian Yelich?) This shouldn’t be surprising; if you hit a ton of foul balls, that adds a lot to your swings total without adding to your hits total, making your hits per swing ratio small. As with contact rate, the ability to keep the ball fair appears to be one of the top skills that will help a player become a HpS leader, but also clearly not the only one.

The Total Bases per Swing leaders, however, are once again all across the board. (According to Sam Miller of ESPN.com, all those foul balls work for Mike Trout, because with his excellent eye for the strike zone, they earn him more walks.) The ability to keep the ball fair seems to have a small impact, relative to some other skills, on becoming a TBpS leader.
But with 30% of the TBpS leaders list in the top 12% for keeping the ball fair, it certainly seems to help, and so it also can be a separator on this list for those who excel at it. With Betts in the top 6% at keeping his hit balls fair, it serves as another separator for him among the TBpS leaders.

If you multiply balls in play per contact by contacts per swing, you get balls in play per swing. And it should be apparent that improving your balls in play per swing is typically going to increase your hits per swing. And this product we speak of is just the product of the two stats we’ve looked at so far. So it makes sense to see so many players on the HpS leaders list among the best at both of these skills. And if you look, you’ll see that several of the other top players on the HpS list have more balls in play per swing than Betts. So there must be something about the balls that Betts puts in play that makes them more likely to become hits, than those of the other guys on the HpS list. Could it be power?

Hitting the ball hard

Okay, let’s have a look at some power stats, then. We’ll focus on average exit velocity. but we’ll also list FanGraphs’ rates of hard and soft contact here, for a different look.

Average exit velocity (in MPH), rates of hard, soft contact of TBpS leaders
Name Avg exit vel rank percentile Soft% Percentile Hard% Percentile
Mookie Betts 92.5 17 96.0% 13.5% 84.8% 44.8% 91.8%
Matt Carpenter 90.4 69 82.8% 9.5% 98.8% 51.1% 99.8%
Jose Ramirez 89.2 139 65.2% 18.4% 42.0% 38.2% 64.0%
Mike Trout 91.4 34 91.7% 14.8% 78.5% 45.3% 93.3%
J.D. Martinez 93.3 9 98.0% 10.1% 98.0% 46.1% 94.5%
Max Muncy 90.9 52 87.1% 11.7% 95.8% 46.7% 95.5%
Alex Bregman 89.1 145 63.6% 17.5% 51.0% 37.0% 55.8%
Steve Pearce 90.2 81 79.8% 18.4% 41.3% 40.0% 76.0%
Ryan Zimmerman 94 5 99.0% 16.1% 66.8% 44.5% 91.5%
Juan Soto 88.9 162 59.3% 20.8% 21.8% 36.7% 53.5%
Ronald Acuna 91 49 87.9% 12.0% 94.0% 47.1% 96.5%
Nick Markakis 90.8 54 86.6% 12.9% 89.3% 40.4% 78.5%
Manny Machado 91.9 23 94.4% 17.7% 50.3% 38.4% 65.5%
Eugenio Suarez 91.1 43 89.4% 8.4% 99.5% 50.5% 99.3%
Francisco Lindor 90.6 65 83.8% 14.9% 77.0% 42.0% 84.0%
Michael Brantley 90.5 67 83.3% 11.4% 96.5% 38.7% 67.0%
Christian Yelich 92.9 11 97.5% 14.5% 79.0% 47.0% 96.3%
Nolan Arenado 90.5 68 83.1% 13.2% 86.8% 43.8% 89.8%
Aaron Judge 95.8 1 100.0% 13.0% 88.8% 47.9% 97.5%
Javier Baez 90.2 84 79.0% 18.5% 40.5% 37.5% 60.3%
Average exit velocity (in MPH), rates of hard, soft contact of HpS leaders
Name Avg exit vel rank pctl Soft% Percentile Hard% Percentile
Mookie Betts 92.5 17 96.0% 13.5% 84.8% 44.8% 91.8%
Andrelton Simmons 88.1 204 48.7% 20.6% 23.0% 36.9% 54.5%
Nick Markakis 90.8 54 86.6% 12.9% 89.3% 40.4% 78.5%
Michael Brantley 90.5 67 83.3% 11.4% 96.5% 38.7% 67.0%
Jose Altuve 87.4 238 40.2% 14.9% 76.5% 35.0% 42.5%
Ben Zobrist 89.4 129 67.7% 12.0% 93.5% 36.9% 54.8%
Joe Mauer 90 89 77.8% 13.1% 87.3% 43.3% 88.3%
Daniel Murphy 87 259 34.8% 13.5% 85.3% 24.9% 5.5%
Tony Kemp 82.5 385 3.0% 17.1% 55.5% 28.7% 14.8%
Jesse Winker 90.2 77 80.8% 11.8% 95.5% 43.9% 90.5%
Jean Segura 87.1 254 36.1% 22.0% 14.3% 26.9% 9.3%
Christian Yelich 92.9 11 97.5% 14.5% 79.0% 47.0% 96.3%
Jose Martinez 90.9 50 87.6% 14.8% 77.8% 39.8% 75.3%
David Freese 90.1 87 78.3% 16.9% 57.5% 34.8% 41.0%
Lorenzo Cain 89.3 133 66.7% 19.0% 35.0% 38.8% 68.0%
DJ LeMahieu 91 45 88.9% 15.1% 75.0% 36.1% 49.8%
David Fletcher 82.9 382 3.8% 20.2% 26.3% 31.2% 25.3%
Alex Bregman 89.1 145 63.6% 17.5% 51.0% 37.0% 55.8%
Buster Posey 89.2 140 64.9% 13.7% 83.5% 36.6% 53.3%
Isiah Kiner-Falefa 83.7 369 7.1% 19.1% 33.5% 31.0% 24.5%

This time, it’s the Hits per Swing leaders that are all across the board, while the Total Bases per Swing leaders all do well, all being in the top 41% for exit velocity, and all but 3 in the top 21%.

So the ability to hit the ball hard would seem to be a prerequisite for being a TBpS leader, just as not being fooled and having good timing would seem to be a prerequisite for being a HpS leader. But these things by themselves are not enough. For example, though 17 of the 20 TBpS leaders are in the top 21% for exit velocity, so are 67 other players who are not on this list. A little more digging will be required to see what puts any one player on this list. For the scope of this article, we’ll keep it to Mookie Betts. Well, actually, I will have some comments along the way for a couple of other guys on these lists.

Excelling at all aspects

Now have a look at these three lists and see who ranks in the top 10% on more than one of them.

There are nine players who are in the top 10% of the misses per swing and the balls in play per contact lists:

  • Mookie Betts
  • Andrelton Simmons
  • Michael Brantley
  • Ben Zobrist
  • Joe Mauer
  • DJ LeMahieu
  • David Fletcher
  • Alex Bregman
  • Isiah Kiner-Falefa

There is only one player, however, who is top 10% for exit velocity and is top 10% on either of the other lists: Mookie Betts, who is top 10% on all three.

There are a few players who come close, however:

  • Nick Markakis
  • Michael Brantley
  • DJ LeMahieu

These three players are in the top 20% of all three lists, and Markakis and Brantley are both on the leader lists for TBpS and HpS.

How do these few players manage to pull off both so well? Let’s think for a moment about the players we saw who are good at keeping the ball fair. We can hypothesize that it’s because these players have good timing. It ought to help them direct the ball to the part of the field where they want it to go. One way to ensure good timing is to slightly slow down your swing, extending the time at which it’s at the angle needed to keep the ball fair. But this saps power, so if most of these guys are indeed slowing down their swings a bit to attain that better timing, this would explain why they don’t put up good power numbers.

But Markakis, Brantley, LeMahieu, and especially Betts do manage those good power numbers, while having good timing, too. This would seem to indicate that these guys are not slowing down their swings. Or they have naturally quicker swings. Or they may have naturally better timing, and thus not need to artificially improve their timing by slowing down their swings. Betts’ Neuroscouting test results lend credence to that idea. So Bett’s ability to combine pitch recognition, timing, and power so well may boil down to his ability to recognize and physically react to pitches more quickly than anyone else.

Though Betts may be the best at combining well-timed contact with power, given that some other guys do that well, it might not be enough to show how he separates himself on the TBpS list. What else could go into this?

Running speed

There’s running speed. We should look at that.

I went on BaseballSavant.com and looked at guys with at least 50 “qualifying runs” on the season. These are events at which they’re presumed to have reached their top speed. There were 378 such players. When they take the top two-thirds of these qualifying runs and average them, here is how our TBpS and HpS leaders fared:

Sprint speed (in feet/second) of TBpS leaders
Name Sprint speed rank percentile
Mookie Betts 28.1 99 74.0%
Matt Carpenter 26.4 264 30.2%
Jose Ramirez 27.6 161 57.6%
Mike Trout 29.2 17 95.8%
J.D. Martinez 26.8 231 39.0%
Max Muncy 27.6 159 58.1%
Alex Bregman 27.8 126 66.8%
Steve Pearce 26.1 289 23.6%
Ryan Zimmerman 26.6 252 33.4%
Juan Soto 27.3 196 48.3%
Ronald Acuna 29.6 9 97.9%
Nick Markakis 26.4 267 29.4%
Manny Machado 26.1 286 24.4%
Eugenio Suarez 26.1 287 24.1%
Francisco Lindor 28.4 70 81.7%
Michael Brantley 26.1 283 25.2%
Christian Yelich 28.5 64 83.3%
Nolan Arenado 25.7 315 16.7%
Aaron Judge 28 102 73.2%
Javier Baez 28.8 43 88.9%
Sprint speed (in feet/second) of HpS leaders
Name Sprint speed rank percentile
Mookie Betts 28.1 99 74.0%
Andrelton Simmons 27.2 206 45.6%
Nick Markakis 26.4 267 29.4%
Michael Brantley 26.1 283 25.2%
Jose Altuve 28.3 73 80.9%
Ben Zobrist 26.6 246 35.0%
Joe Mauer 25.9 304 19.6%
Daniel Murphy 25.3 337 10.9%
Tony Kemp 27.5 176 53.6%
Jesse Winker 26 292 22.8%
Jean Segura 27.9 119 68.7%
Christian Yelich 28.5 64 83.3%
Jose Martinez 26.4 272 28.1%
David Freese 26.5 257 32.1%
Lorenzo Cain 28.6 60 84.4%
DJ LeMahieu 26.9 218 42.4%
David Fletcher 28.1 98 74.3%
Alex Bregman 27.8 126 66.8%
Buster Posey 24.9 355 6.1%
Isiah Kiner-Falefa 28 110 71.1%

I expected to see some plodders on the TBpS list, but the real surprise was that only three of the top 10 players for HpS are in the top half of players for running speed. Speed is clearly not a primary factor in hitting well. However, it can certainly help a player get a few extra hits and a few extra bases taken, and that should help a player separate himself. And it helps Betts in this case. Of the top 10 on the HpS list, only Jose Altuve is faster than Betts; of the top 10 on the TBpS list, only Mike Trout is faster than Betts.

There’s two more things to look at. One, we’ll look at vertical accuracy by looking at Betts’ ratios of ground balls, line drives, fly balls, and popups. Then we’ll also look to see if he uses all fields, a skill that can keep defenses from shifting on pull hitters. For these, we’ll use numbers from Fangraphs’ batted balls stats page.

Vertical Accuracy

I expected to see a high rate of line drives and a low ratio of infield popups to fly balls for Betts. But I didn’t see that:

Most line drives and fewest popups for TBpS leaders
Name LD% Percentile IFFB% Percentile
Mookie Betts 20.2% 40.8% 11.0% 40.0%
Matt Carpenter 28.1% 97.0% 2.0% 95.8%
Jose Ramirez 21.6% 55.3% 14.1% 20.8%
Mike Trout 23.7% 72.0% 9.1% 55.3%
J.D. Martinez 23.6% 71.3% 2.7% 92.8%
Max Muncy 18.8% 24.0% 6.3% 74.3%
Alex Bregman 21.7% 56.0% 11.6% 35.5%
Steve Pearce 24.8% 82.8% 8.9% 57.3%
Ryan Zimmerman 19.4% 31.3% 5.6% 78.5%
Juan Soto 16.6% 7.0% 7.6% 65.3%
Ronald Acuna 17.3% 11.3% 8.2% 62.8%
Nick Markakis 27.3% 94.5% 6.4% 73.3%
Manny Machado 18.7% 22.8% 11.6% 35.3%
Eugenio Suarez 25.4% 87.5% 3.4% 90.5%
Francisco Lindor 23.9% 74.3% 9.7% 49.5%
Michael Brantley 22.9% 65.5% 3.8% 88.8%
Christian Yelich 24.7% 81.5% 5.4% 79.5%
Nolan Arenado 22.9% 66.0% 12.9% 28.0%
Aaron Judge 21.4% 52.8% 4.7% 84.5%
Javier Baez 22.6% 62.5% 11.9% 33.8%
Most line drives and fewest popups for HpS leaders
Name LD% Percentile IFFB% Percentile
Mookie Betts 20.2% 40.8% 11.0% 40.0%
Andrelton Simmons 20.4% 41.8% 14.6% 18.0%
Nick Markakis 27.3% 94.5% 6.4% 73.3%
Michael Brantley 22.9% 65.5% 3.8% 88.8%
Jose Altuve 24.4% 78.3% 5.5% 78.8%
Ben Zobrist 21.6% 54.8% 5.3% 80.8%
Joe Mauer 25.3% 85.8% 4.2% 86.8%
Daniel Murphy 25.4% 87.8% 2.9% 91.8%
Tony Kemp 24.1% 75.8% 6.3% 73.8%
Jesse Winker 24.0% 75.0% 8.9% 58.5%
Jean Segura 19.6% 33.3% 16.8% 10.5%
Christian Yelich 24.7% 81.5% 5.4% 79.5%
Jose Martinez 25.3% 86.0% 4.1% 87.5%
David Freese 21.3% 50.5% 6.7% 71.3%
Lorenzo Cain 20.1% 38.8% 7.5% 67.3%
DJ LeMahieu 21.2% 48.5% 3.7% 89.0%
David Fletcher 25.3% 86.5% 18.0% 8.0%
Alex Bregman 21.7% 56.0% 11.6% 35.5%
Buster Posey 21.8% 56.8% 2.8% 92.3%
Isiah Kiner-Falefa 24.5% 78.8% 9.5% 52.0%

Betts is in the lower half of all players in terms of most line drives and lowest ratio of popups to fly balls, and most of his peers on these top 20 lists have done better than him. It seems that horizontal accuracy is not a separator for him.

But let’s look at ground balls and fly balls. The percentiles below are for lowest ground ball rates, highest fly ball rates, and lowest ground ball to fly ball ratio.

Ground balls versus fly balls for TBpS leaders
Name GB% Percentile FB% Percentile GB/FB Percentile
Mookie Betts 34.8% 88.3% 45.0% 90.0% 0.77 89.8%
Matt Carpenter 24.1% 100.0% 47.8% 96.5% 0.5 100.0%
Jose Ramirez 32.6% 94.0% 45.8% 93.0% 0.71 94.5%
Mike Trout 32.7% 93.5% 43.5% 84.5% 0.75 91.8%
J.D. Martinez 44.4% 42.5% 32.0% 30.5% 1.39 35.8%
Max Muncy 36.2% 84.3% 45.1% 90.5% 0.8 87.8%
Alex Bregman 34.3% 90.0% 44.0% 87.3% 0.78 89.0%
Steve Pearce 39.2% 70.8% 36.0% 53.8% 1.09 63.3%
Ryan Zimmerman 45.8% 33.5% 34.8% 45.5% 1.31 41.3%
Juan Soto 53.0% 7.8% 30.4% 22.0% 1.74 14.3%
Ronald Acuna 41.8% 56.5% 40.9% 76.3% 1.02 70.8%
Nick Markakis 40.9% 62.8% 31.8% 30.0% 1.28 42.8%
Manny Machado 37.4% 79.3% 43.9% 85.8% 0.85 83.5%
Eugenio Suarez 37.3% 79.8% 37.3% 63.0% 1 73.8%
Francisco Lindor 37.5% 78.3% 38.6% 70.5% 0.97 75.8%
Michael Brantley 45.7% 34.5% 31.4% 28.8% 1.45 29.5%
Christian Yelich 53.3% 7.0% 22.0% 3.3% 2.42 4.0%
Nolan Arenado 38.8% 73.3% 38.3% 69.5% 1.01 71.5%
Aaron Judge 42.4% 52.3% 36.1% 54.5% 1.17 54.5%
Javier Baez 46.1% 32.5% 31.2% 27.5% 1.48 28.0%
Ground balls versus fly balls for HpS leaders
Name GB% Percentile FB% Percentile GB/FB Percentile
Mookie Betts 34.8% 88.3% 45.0% 90.0% 0.77 89.8%
Andrelton Simmons 49.4% 17.8% 30.2% 21.5% 1.63 20.0%
Nick Markakis 40.9% 62.8% 31.8% 30.0% 1.28 42.8%
Michael Brantley 45.7% 34.5% 31.4% 28.8% 1.45 29.5%
Jose Altuve 44.8% 39.5% 30.8% 25.5% 1.45 29.0%
Ben Zobrist 46.2% 31.8% 32.2% 31.0% 1.44 30.5%
Joe Mauer 51.0% 13.5% 23.7% 5.3% 2.15 6.8%
Daniel Murphy 36.8% 81.8% 37.8% 66.0% 0.97 75.5%
Tony Kemp 45.6% 34.8% 30.4% 22.5% 1.5 26.3%
Jesse Winker 42.1% 54.8% 33.9% 39.3% 1.24 47.3%
Jean Segura 52.0% 9.8% 28.4% 15.0% 1.83 11.5%
Christian Yelich 53.3% 7.0% 22.0% 3.3% 2.42 4.0%
Jose Martinez 46.5% 29.3% 28.2% 14.8% 1.65 18.5%
David Freese 53.4% 6.8% 25.3% 7.5% 2.11 7.0%
Lorenzo Cain 56.6% 3.5% 23.3% 4.5% 2.43 3.8%
DJ LeMahieu 46.1% 32.3% 32.7% 32.8% 1.41 33.8%
David Fletcher 38.8% 73.0% 35.9% 52.5% 1.08 63.5%
Alex Bregman 34.3% 90.0% 44.0% 87.3% 0.78 89.0%
Buster Posey 47.4% 25.0% 30.8% 25.3% 1.54 23.5%
Isiah Kiner-Falefa 49.8% 17.0% 25.7% 8.5% 1.94 9.0%

Hang on a moment – Betts does well in all of these! Top 12% in each. So let’s see – slightly above average number of popups, a high number of fly balls, slightly below average number of line drives, and a low number of ground balls. All that adds up to a guy who has prioritized getting the ball in the air. He’s sacrificing a few line drives and taking on a few extra popups in order to avoid hitting ground balls. This has likely earned him more extra base hits.

Vertical accuracy and Christian Yelich

Before we move on to looking at use of all fields, let’s examine two more players here. Christian Yelich is the opposite of Mookie Betts here. An extremely high rate of ground balls, a high rate of line drives, an extremely low number of fly balls, of which a very small fraction are popups. He avoids having his balls caught for outs, and given that he’s one of the speediest players in these top 20 lists, that will help bring his speed into play to his advantage. More on this later.

Vertical accuracy and Matt Carpenter

The other player is Matt Carpenter. Look at those numbers. Matt Carpenter is the absolute king of vertical accuracy with the bat. He’s a wizard. He simultaneously has the lowest ground ball rate of all players, while also having one of the lowest fractions of fly balls that are popups. It’s all line drives and driven fly balls for Matt Carpenter. Yelich avoids popups by hitting a lot of ground balls; Betts avoids ground balls by hitting a few extra popups; Carpenter avoids both. His line drive and fly ball rates are among the best, and his ground ball to fly ball ratio is the lowest of all players. He’s number 2 in all of baseball in percentage of balls hit hard. And the thing is, accuracy with bat placement is his one exceptional skill. He’s got fairly average numbers for swing and miss and foul balls, so he doesn’t excel at not getting fooled and having good timing. His power isn’t great, either – sure, he’s top 20% in exit velocity, but when you’re top 0.5% in your fraction of hard-hit balls, that’s not impressive. His sprinting speed is in the bottom third of all players. The fact that he ranks second in all of baseball in total bases per swing is based entirely on his exceptional accuracy in positioning his bat when he swings.

Using all fields

At last, let’s look at whether Betts uses an all-fields approach, again using batted ball numbers from FanGraphs. They provide percentages of balls hit to the opposite field, up the middle, and pulled. We’ll rank high fractions higher for opposite field hitting, and low fractions higher for pull hitting.

All fields approach for TBpS leaders
Name Pull% Percentile Oppo% Percentile
Mookie Betts 49.2% 8.3% 16.9% 2.5%
Matt Carpenter 47.4% 13.3% 23.2% 36.3%
Jose Ramirez 52.4% 1.8% 19.4% 10.8%
Mike Trout 41.7% 43.0% 23.0% 34.5%
J.D. Martinez 40.9% 50.8% 30.3% 89.5%
Max Muncy 44.4% 26.5% 24.3% 45.3%
Alex Bregman 47.5% 12.3% 19.7% 13.0%
Steve Pearce 59.2% 0.3% 14.4% 0.5%
Ryan Zimmerman 33.6% 88.8% 22.6% 31.0%
Juan Soto 34.8% 82.5% 29.9% 87.3%
Ronald Acuna 45.2% 22.5% 19.7% 13.5%
Nick Markakis 32.1% 92.0% 28.9% 81.8%
Manny Machado 38.1% 69.0% 26.7% 66.5%
Eugenio Suarez 43.1% 33.0% 20.9% 19.3%
Francisco Lindor 39.4% 59.3% 26.2% 63.8%
Michael Brantley 40.6% 52.3% 20.9% 19.0%
Christian Yelich 35.5% 80.8% 26.6% 66.0%
Nolan Arenado 39.1% 61.0% 24.0% 42.0%
Aaron Judge 42.4% 39.3% 27.7% 75.0%
Javier Baez 41.7% 43.8% 24.9% 51.0%
All fields approach for HpS leaders
Name Pull% Percentile Oppo% Percentile
Mookie Betts 49.2% 8.3% 16.9% 2.5%
Andrelton Simmons 51.0% 3.8% 16.3% 1.0%
Nick Markakis 32.1% 92.0% 28.9% 81.8%
Michael Brantley 40.6% 52.3% 20.9% 19.0%
Jose Altuve 37.2% 73.8% 21.8% 26.3%
Ben Zobrist 48.5% 10.3% 20.8% 18.0%
Joe Mauer 26.9% 98.3% 33.8% 97.0%
Daniel Murphy 36.8% 77.0% 35.1% 98.5%
Tony Kemp 49.4% 7.8% 22.0% 27.0%
Jesse Winker 37.1% 74.8% 25.7% 58.0%
Jean Segura 38.4% 66.0% 22.7% 31.5%
Christian Yelich 35.5% 80.8% 26.6% 66.0%
Jose Martinez 30.8% 95.8% 35.2% 98.8%
David Freese 38.2% 68.5% 28.7% 81.0%
Lorenzo Cain 31.2% 94.5% 32.4% 94.8%
DJ LeMahieu 28.6% 97.5% 29.5% 84.3%
David Fletcher 42.8% 36.5% 22.5% 29.5%
Alex Bregman 47.5% 12.3% 19.7% 13.0%
Buster Posey 33.7% 88.3% 28.2% 78.0%
Isiah Kiner-Falefa 39.7% 57.5% 28.6% 79.8%

Wow. There’s really only one player on each list that is less of an all-fields hitter than Betts. He’s one of the most extreme pull hitters in all of baseball. But so is Jose Ramirez of the Indians, his fellow MVP candidate. Could pull hitting work in his favor?

Consider this: he pulls balls and hits them in the air. He also doesn’t hit foul balls, which would lead one to suspect that pulling the ball is deliberate. And when he pulls the ball in the air in home games, it goes right to Fenway Park’s Green Monster, a nice, big, close target. Sure enough, his batting average is more than 40 points higher at home than on the road this season.

Remember how Mookie Betts was a standout in neuroscouting tests. That says he identifies pitches quickly. This gives him the ability to not be fooled, and to have excellent timing. With excellent timing and quick hands, he can consistently pull the ball while keeping it fair. And by pulling it and keeping it in the air, he maximizes distance traveled. He’s leveraging his natural abilities and the Green Monster to get the ball past the warning track and rack up a lot of bases.

What is up with Christian Yelich

And finally, looking over these all-fields numbers, we now know what is up with Christian Yelich. He’s got one of the strongest all-fields approaches on this list. He hits the ball hard – Fangraphs has him in the top 4% of players in percentage of balls that are hard hit, and BaseballSavant has him in the top 3% for average exit velocity. He’s top 20% in sprint speed. All of which combines to make him hard to defend on balls in play, which would explain why he has the highest BABIP on these lists, and is in the top 1.5% in the league for BABIP. This is why hitting ground balls works for him. He can use his speed and the fact that he’s a step closer to first base than right-handed hitters to beat out ground balls. And he can’t be shifted on, so more of those ground balls will get through to the outfield. And let’s recall that he’s not bad at not swinging and missing and keeping the ball fair; he’s average at these things, where his peers on these lists excel at these things. He’s just on these lists for different reasons.

Advertisements

How will the AL MVP race evolve from here?

You may disagree with me, but right now I see the American League’s 2018 Most Valuable Player award to have three clear top contenders: Mike Trout of the Angels (because of course), Mookie Betts of the Red Sox, and Jose Ramirez of the Indians. Right now (through Sunday’s games) they have fWARs of 7.6, 7.8, and 7.7, respectively. Only one other player in either league is above 5.2 (Francisco Lindor at 6.7). What’s that you say? Lindor deserves to be in the conversation? Well, he is surging a bit. Okay, you’ve convinced me. Let’s call this a four-horse race, including Lindor.

In this article we’ll attempt to determine how the MVP race will proceed from now through the end of the season. Before we get into that, though, let’s take a closer look at where the race is right now, by looking at some numbers other than fWAR, because of course there’s more to it all than just WAR.

Let’s start with some baserunning numbers. (I’m going to use a consistent order in these lists, and the reasons for my choice of order will become apparent later.) BsR here is an overall baserunning metric that considers not just stealing but also ability to take an extra base, avoid making outs when taking an extra base, and similar evaluations.

Baserunning of AL MVP candidates
Player SB rank CS BsR rank
Mookie Betts 23 8 (t) 3 5.3 9
Mike Trout 21 11 (t) 1 5.5 8
Jose Ramirez 27 4 (t) 5 7.1 2
Francisco Lindor 19 14 (t) 6 1.2 60

They all steal a lot of bases, and except for Lindor, they all rank pretty highly on overall baserunning. In fact, Betts, Trout, and Ramirez are all pretty much elite baserunners.

How about defense?

Defense of AL MVP candidates
Player Fielding rank Adjustment Defense rank
Betts 8.9 6; 1st of 22 RF -3.9 4.9 32; 1st of 22 RF
Trout 1.1 67; 11th of 24 CF -0.1 1.1 67; 12th of 24 CF
Ramirez 6.2 19; 3rd of 20 3B 1.3 7.4 19; 3rd(t) of 20 3B
Lindor 8.7 7; 3rd of 25 SS 5.1 13.8 4; 3rd of 25 SS

“Fielding” in this chart is UZR, the stat Fangraphs uses for determining number of defensive runs saved when compared to other players at the same position. To compare players at different positions, an “Adjustment” is applied based on the position played, and the number of games played there. This gives the overall number for Defense. I personally feel that these adjustments are too extreme in many cases, such as favoring shortstops too much, and punishing corner outfielders too much.
Lindor really shines here, adjustment or no adjustment. While Betts and Ramirez have good numbers for their positions, Betts seems to be punished for playing right field; he’s on his way to his third consecutive gold glove at the position, and yet he still ranks only 32nd overall in “Defense” despite being 6th overall in UZR, and tops at his position. Trout looks quite average on defense, despite having made a focus on improving it this spring; it’s the one area that doesn’t really add to his value (though it doesn’t subtract, either).

And now offense:

 

Offense of AL MVP candidates
Player AVG rnk OBP rnk SLG rnk wOBA rnk wRC+ rnk
Betts 0.350 1 0.438 2 0.668 2 0.458 1 192 1
Trout 0.309 7 0.459 1 0.624 4 0.445 2 190 2
Ramirez 0.298 21 0.409 4 0.624 3 0.427 4 172 4
Lindor 0.292 30 0.372 22 0.561 11 0.393 11 149 9

It’s pretty clear that Betts, Trout, and Ramirez are (with J.D. Martinez) among the top 4 hitters in the game. When you break it down by hit type, Betts hits singles, doubles, and triples with greater frequency than the others; they hit home runs at a similar rate, with Ramirez ahead of the others; Ramirez and Betts have very low strikeout totals; Ramirez walks a lot, but Trout has an extremely high walk rate. When park factors are taken into account as with wRC+, Trout pulls to nearly even with Betts.

To sum up, Betts, Trout, and Ramirez are best-in-the-game hitters, while Lindor is next-tier, and still better than most teams’ best hitter.

Overall, Betts and Ramirez excel at everything; Trout excels at everything but defense; and Lindor excels at everthing but baserunning, at which he’s still above-average.

My question is, how will this three-horse race – uh, I mean four-horse race – proceed from here? Will one of these four players emerge and separate himself from the others by the end of the season? Will those who have been saying that the others have a long way to go to catch up with Trout’s excellence eat their words?

A lot of MVP voters will look at total WAR on the season as their primary metric for judging overall value on the season. I think it makes more sense (for players who have played at least most of the season) to look at the rate at which the top players have accumulated WAR, but I’m not an MVP voter, so we’ll try to predict overall WAR by two means.

1) Assume all players continue accumulating WAR at the same rate per game that they have been on average thus far this season, multiplying that by the expected number of games each will play, and come up with a projected WAR that way. (For elite players like these, we can treat WAR as a cumulative statistic; we can’t do that for replacement-level players whose WARs fluctuate between negative and positive values, therefore behaving like a rate statistic.)

2) Look at how each player has historically trended over the last two months of the season, and adjust the estimate upward or downward accordingly.

So, the first way. Here are the fWAR’s per 100 games and per 500 plate appearances, for each player thus far this year:

Pace of 2018 fWAR accumulation
Player WAR per 100 G rank WAR per 500 PA
Betts 7.8 1 8.5
Trout 7.0 2 7.9
Ramirez 6.7 3 7.6
Lindor 5.8 4 6.2

Betts is showing some separation here, due to having played fewer games than the others. Let’s see if that separation carries over into projected WAR. We’ll predict the playoff-bound Indians and Red Sox, with somewhat comfortable leads in their division races, will rest their stars 4 games each the rest of the way, in preparation for the playoffs. Trout is currently injured and appears destined to return on Friday. After that, the Angels, whose playoff hopes have already faded pretty far, will likely give Trout rest to avoid further injury in games that don’t matter this September. So I’ll project him for 8 games off. This leads to the following projections:

Projected 2018 fWAR leaders at current pace
Name Team G remaining G proj WAR proj
Mookie Betts 42 38 10.8
Mike Trout 45 41 10.5
Jose Ramirez 43 35 10.0
Francisco Lindor 45 41 9.1

But what if they don’t continue at the rates they’ve been at? Let’s look at some history.
Well I have some nice plots for you, but they’re not quite finished. For now, I’ll just show you an average of their last 3 complete years (or 2 years in the case of Jose Ramirez) of wRC+, broken out by month, in a table:

Name Mar/Apr May Jun Jul Aug Sept/Oct
Mookie Betts 96 120 125 113 130 141
Mike Trout 178 172 181 186 166 166
Jose Ramirez 126 117 134 120 119 185
Francisco Lindor Not completed yet

The trend here appears to be that Trout’s offensive production drops off in August and September, his worst two months of the year; Betts’ production climbs through August and into September, his best two months of the year; and Ramirez’s climbs in September, his best month of the year. It’s hard to rely on this happening in any particular year, though. Each year, when you look at them individually, seems to follow its own unique pattern for each of these three players. However, it is a common thing for a player to be a habitually strong finisher, or a habitually poor finisher, so anticipating a downturn for Trout and upturns for Ramirez and Betts is probably as sound as anything else we could project. Especially given that Trout will be coming off an injury later this week, and will have little to play for in September.

Given that there’s only about a quarter of the season to go, the changes in trajectory won’t have a huge impact, so I’ll project modest 0.2 and 0.3 adjustments.

Name fWAR proj
Mookie Betts 11.0
Mike Trout 10.2
Jose Ramirez 10.2
Francisco Lindor 8.8 to 9.4

So there you go. If we base things on fWAR, I’m projecting Mookie Betts will be this year’s fWAR leader. Of course I had to make some rather exact guesses to get this number, and real life has way more variability than is contained in the numbers I used, so consider these numbers to represent a most-likely outcome, but not a likely outcome. Still, there’s enough of a gap between Betts and the others that I would say it’s likely that he finishes the season as the fWAR leader.

Whether that earns him the MVP is another question. There are many who still claim that Betts and Ramirez haven’t yet reached Trout’s level of excellence, despite the evidence right in front of us. There are others who ignore baserunning and defense, and put achievement of the triple crown above all other offensive achievement. If J.D. Martinez even comes close to winning the triple crown, which he’s currently close to, then he may steal a lot of votes from these more deserving players, despite adding no value on defense or on the bases.

Comparing the tools and other traits of value of Mookie Betts and Mike Trout in 2016

Mike Trout’s AL MVP win yesterday was preceded by a lot of talk about who really was the more valuable player in 2016, Mike Trout or Mookie Betts. I’ve noticed, though, a lot of those assessments didn’t have the facts quite right. Others overlooked some things that matter. Some may look at the competing lists of WAR numbers, see that Trout is ahead of Betts on both of them, and just call it for Trout. I say there’s more to it than that. So I wrote this article to try to ensure people have the comparisons correct, and to point out what they may be overlooking.

One thing about WAR is that there are at least two versions out there (the FanGraphs version and the Baseball-Reference.com version), and the variances in the different versions show that WAR is not a perfectly calculated statistic. Small differences in WAR leave room for further analysis, so I think it’s worth breaking down the two players based on each of their five tools. Beyond that, I’ll look at traits that don’t factor into WAR calculations but still impact a team’s win totals (clubhouse presence) and a ballclub’s revenues (fun to watch, and likeability). Though this article is focused on who Trout and Betts were in 2016, I may reference some things that happened in earlier seasons as examples.

I’ll rate these loosely using the following categories. As a rule of thumb, these correspond approximately to the following percentiles of performance:

Average 43rd to 57th percentiles
Above average 58th to 70th percentiles
Well above average 71st to 84th percentiles
Excellent 85th to 94th percentiles
Elite Top 5%

Note that one of the tools is traditionally called “Hitting for average”. I’m updating this to “Reaching base”, as these days on-base percentage is considered more important than batting average. Another is traditionally called “speed”. I’m updating this to “baserunning”.

First the results, followed by the analysis. After looking at the 2016 numbers for both players and mixing in anecdotes and commentary I’ve come across, and actual play that I’ve witnessed, I came up with these assessments of their five tools:

Tool Trout Betts
Speed/baserunning Elite Elite
Hitting for average/on base Beyond Elite Excellent
Hitting for power Well above average Well above average
Arm strength Average Excellent
Fielding Average Elite

Looking at traits that don’t contribute to WAR but do contribute to a ballclub’s bottom line, I came up with these results:

Trait Trout Betts
Glue – clubhouse presence Above average Elite
Fun to watch Above average Elite
Likability Well above average Excellent

Let’s break these down.

Speed/baserunning
Both players are elite. On stealing bases, they’re about the same; most teams would prefer to have Betts’ 26 steals versus 4 times caught stealing over Trout’s 30 steals versus 7 times caught stealing, but this really is kind of a toss up. Fangraphs’ BsR agrees. BsR puts a value in runs produced on all aspects of baserunning, including base stealing prowess, extra bases taken, outs on the bases, and avoiding double plays. Mike Trout had the fourth best BsR in 2016 among all players, at 9.3. Betts had the third best at 9.8. It’s basically a toss-up.

Hitting for power
While most probably think of Trout as more of a power hitter than Betts is, that’s not really true anymore. Per plate appearance, Trout and Betts hit home runs and triples at the exact same rates in 2016. Betts hit doubles more frequently (5.8% to Trout’s 4.7%) and singles more frequently (18.6% to 15.7%). If we divide by at bats instead of plate appearances, however, Trout’s power numbers start looking better, because we’re not including his very frequent walks and hit-by-pitches in the divisor. If we were to look at slugging percentage alone, we might give both Betts and Trout an “Excellent” for power; but when you look at stats like ISO that isolate power from on-base ability, both end up in the well-above-average range instead.

Reaching base
Trout blows Betts out of the water in walk rate, 17.0% to Betts’ 6.7%. Also Trout’s hit-by-pitch rate of 1.6% was much higher than Betts’ 0.3%. Trout’s 20.1% strikeout rate was much worse than Betts’ 11.0%, though.

So at the plate, the main difference in results is Trout’s extremely high on-base rate due to taking so many walks, and the main difference in approach is that Betts puts the ball in play a lot, and Trout does not. Only about 4% of qualifiers put the ball in play more frequently than Betts; only about 7% put the ball in play less frequently than Trout.

Trout’s .441 on base percentage led all of baseball. In the American League, it wasn’t even close. The next several players on the list were all clustered around .400. In the National League, only Joey Votto’s .434 came close. It’s obvious Trout deserves elite status in this category, but I though his separation from the pack warranted a little more, so I gave him a “beyond elite” instead.

Arm strength
There’s a component of UZR that measures arm strength not just by velocity but also accuracy. Betts qualifies as “excellent” for arm strength based on this, and based on the eye test (such as when he threw a perfectly-placed laser beam of a throw to gun down one of the game’s fastest runners, Kevin Kiermaier, trying to take third on a fly out to right). Trout actually rates below average on this, though not by a whole lot. I’m upping that to “average” based on the anectodal evidence that he’s improved his arm strength to be average or a little above average.

Fielding
Some metrics have Betts as the best defender in baseball in 2016. Others have him a few notches down. But they certainly put him at an elite level, even when you remove arm strength from the equation. Trout’s fielding was actually average in 2016, even if you separate this from arm strength. This may surprise some who think of him as an above average fielder; they may have formed this impression based on his rookie season in which he was above average as a fielder. He hasn’t been better than average since, however.

Clubhouse Presence
Those are (a slightly altered version of) the so-called “five tools”. Now some may disagree, but I really do think there is a “sixth tool” a player can have to impact his team’s win total, which we can call “clubhouse presence”. It’s anything about a player that makes his teammates want to give their best effort during preparation to play and during actual gameplay. It affects win totals because, in my opinion, the results achieved on the field are a product of three things: skill, preparation, and effort, and clubhouse presence impacts two of those.

Mike Trout may or may not set a good example to his teammates by working hard on preparation. I don’t know. I do know he worked hard on his one area of weakness, his throwing arm, to eliminate the weakness. One thing I know about Mookie Betts is that he is constantly asking people questions on how to improve, and that will certainly set a tone that players can be working hard on preparation.

Trout is a positive, good-natured guy who plays Pokemon Go and Nerf basketball in the clubhouse. Certainly not a clubhouse drain. But at the same time he doesn’t seem to be very outgoing. Betts is the kind of guy who’s friends with everybody. He’s got friends on his team and on all the other teams. Having his personality in the clubhouse and on the field makes baseball fun for everyone, and that helps get maximal effort from the players on the team.

So I’m giving Trout an “above average” on clubhouse presence, but Betts an “elite”, because his type of personality is actually pretty rare.

Fun to Watch and Likability
These last two traits are all about the fans. What, aside from winning games, hitting home runs, etc. gets fans to fork over their money to watch a team play? To me, it’s being fun to watch and being likable.

Trout climbing the outfield fence to rob a home run makes him fun to watch. Mookie Betts stealing two bases on one play (with no error), or alertly taking an unmanned second base on an infield single, these are unique plays that nobody’s ever seen before, and help to make him an elite for this category. His catches on defense can be quite spectacular and acrobatic, too, such as the time he almost fell into the Fenway Park bullpen while making a game-ending, home-run robbing grab to preserve Rich Hill’s masterful shutout late in 2015. The excitement he visibly displayed while running back into the infield with the ball held high in his glove is an example of the enthusiasm for baseball that always radiates unrestrained from Betts. Oh, and who did he steal that home run from … that’s right, it was none other than Mike Trout. So I guess they kind of teamed up on that one. Trout probably had to smile at that.

Trout smiles a lot. So does Betts. But I’d say that Betts is the one with the “winning” smile. Electric. Unrestrained. Wins you over, and wins fans over. They’re both likable, but Betts is in a higher category of likable.

Summary
So there you have it. Looking over these ratings, Betts is one of the best in the game in every category except hitting for power, and he’s approaching being one of the best in that, too. He’s pretty much everything you could want in a player. Trout is definitely better at the plate, which is the most important part of achieving a high WAR. But his “secret weapon” has been his excellent baserunning, and Betts is his match there. In every other aspect of the game, the fielding aspects and also the less tangible but still valuable ones, Betts is his superior.

I’m not concluding that Betts should have gotten the MVP over Trout. But there’s been a lot of debate on that topic, and there may be some yet to come. But it seems to me that a lot of people have wrong ideas on how close Betts and Trout are on baserunning and power hitting, and many overestimate Trout’s fielding ability. There also never seems to be discussion of clubhouse presence, likability, and being fun to watch, and those do carry value. I wrote this to help ensure that discussion doesn’t miss any of these points.

I hope to hear some good discussion on this now!

Cubs have them right where they want them

Obviously, a World Series Game 1 win would have been better for the Cubs. But when you think about the most likely scenarios in which the Cubs win the World Series, the two most likely both have the Cubs losing Game 1.

One scenario is the Cubs win all the games in which Corey Kluber doesn’t pitch, taking the Series in 6 games. But if you don’t have a midgame lead in Game 6, you’ll be facing a rested Andrew Miller in that game, not what you want.

The other scenario is the Cubs take one of the first two in Cleveland, and win all three home games. In this scenario, the most likely outcome is losing Game 1 (because Kluber is pitching) and winning Game 2.

So what sets you up best for winning Game 2? Making sure Andrew Miller throws a lot of pitches in Game 1. And hope that Game 2 isn’t rescheduled due to rain.

The Cubs definitely accomplished the first part of that. Miller threw 46 pitches in Game 1, more than he’s thrown all season. Plus, they mounted a real scoring threat against him. If they see him in Game 2, they won’t see much of him, and they won’t be intimidated by him. And he may not be as effective, either. The Cubs will be ready to succeed against Miller in Game 2, if they have to.

As for winning Game 4 against Kluber, it will help that they’re at home in Chicago. It will also help that they’d seen a lot of pitches from Kluber just four days before, so they have a better idea what to expect from him. There was some good contact against him in Game 1. They just need a little bit more good contact to start putting up runs.

For the Cubs’ sake, let’s just hope the rain doesn’t cancel Game 2.

Silver linings: despite losses, Eduardo Rodriguez still helping Red Sox win in September

Eduardo Rodriguez hasn’t earned a win in his last 9 starts, going back to mid-July. In that time, he’s had a good share of tough-luck losses and no decisions, none worse than September 4 against Oakland. Spinning a no-hitter through 7 and 2/3 innings, he finished having thrown 8 innings of shutout ball, the best start of his career. However, the Red Sox gave him exactly zero runs of support that day. This, the day after the Red Sox had scored 11 runs against the same team, and 16 the day before that. They would go on to lose 1-0.

And yet, it was not all for naught, because Rodriguez and the rest of the Red Sox starters strung together one excellent start after another to start September. By going deep into games, fewer innings were required of the relievers. By limiting runs allowed to at most 2 through the first seven games of September, the starters usually left the game with a big lead, allowing the Red Sox to pick and choose which relievers to use based on who was most rested, or who needed confidence-boosting. Some additional rest was already expected for the bullpen once rosters expanded September 1, but combined with the help from the starters, it was a perfect recipe for turning an overworked bullpen into a very well rested one.

The dividends from this rest were reaped Sunday night, as the bullpen was called on to take over at the start of the 4th inning of a close game against a potent offense and division rival in a tight pennant race. And they came through.

Let’s look at the numbers to see if they back all this up.

First, here are the performances of the Red Sox starters through the first 8 games of September:

First 8 starts of September 2016
Date Starting pitcher IP H R ER
9/2/2016 David Price 7 4 2 2
9/3/2016 Rick Porcello 7 4 2 2
9/4/2016 Eduardo Rodriguez 8 1 0 0
9/5/2016 Drew Pomeranz 5.2 6 2 2
9/6/2016 Clay Buchholz 6.2 8 1 1
9/7/2016 David Price 7 6 2 2
9/9/2016 Rick Porcello 7 6 2 2
9/10/2016 Eduardo Rodriguez 6 4 3 2

Indeed, on the whole they went quite deep into games, and allowed very few runs.  This allowed the Red Sox to use the bullpen as a whole much less:

Per game usage averages
IP (starters) IP (relievers) Pitches (rel.)
August 6.30 2.49 44.3
Sept (thru 9/10) 6.79 1.83 28.6

The bullpen as a whole threw about 1/3 fewer pitches per game through the first part of September versus their August average.  That’s a big reduction in workload.  Factor in the expanded rosters, allowing three additional relievers to be used in early September (Koji Uehara, Joe Kelly, and Robby Scott), and the usage per reliever went down.  Here are the number of appearances made per team game played in the month for each reliever.  Only pitchers making relief appearances in both months are included.

Appearances per team game though Sept 10
Aug App/G Sep App/G
Brad Ziegler 0.367 0.250
Craig Kimbrel 0.367 0.250
Fernando Abad 0.400 0.250
Heath Hembree 0.100 0.125
Junichi Tazawa 0.333 0.125
Matt Barnes 0.433 0.250
Robbie Ross 0.400 0.125

Except for Heath Hembree, who hadn’t been used much in August, the frequecy with which each reliever was called upon dropped by a third or more, for everybody.  Rest for the weary!

Better yet, thanks to improved performances by these relievers, they became more pitch-efficient.  With the exception of Brad Ziegler, the number of pitches thrown per game played by the team (not per game the pitcher participated in) dropped for each pitcher to between one sixth and one third of their previous August numbers.  That’s a lot of rest!

Pitches per team game though Sept 10
Aug Pit/G Sep Pit/G
Brad Ziegler 5.73 4.00
Craig Kimbrel 6.87 1.25
Fernando Abad 6.27 1.88
Heath Hembree 1.77 0.63
Junichi Tazawa 6.47 1.88
Matt Barnes 7.13 2.25
Robbie Ross 6.47 1.13

The performances got better, too.  Per batter faced, the frequency of undesirable results went down, and the frequency of desirable results went up:

Results per batter faced by relievers
H BB SO HR
August 22.1% 11.2% 24.8% 2.7%
Sept (thru 9/10) 18.6% 3.4% 33.9% 0.0%

Most importantly, the relievers’ overall earned run average went from poor to perfect:

Relievers’ ERA
ERA
August 4.70
Sept (thru 9/10) 0.00

Obviously, Sunday’s game threw off these low usage numbers. But that wasn’t such a bad thing, when you realize that none of these “previously overused” relievers had been called on more than twice over the previous 10 days.  They’ll need to pitch occasionally, and pitch in some pressure situations occasionally, to stay sharp.  With Uehara and Kelly back and throwing well, the Red Sox bullpen is suddenly looking like a strength.

The one thing remaining that the Red Sox have lacked is late-inning offense, especially in close games.  If they can turn that around, they’ll have all facets of their game working well.  That will make for an easy September, and an easy September will allow them to set themselves up to perform well in the playoffs.

Yes, there really is a surge in talented young baseball players now

Seems like the last 3 or 4 years there have been a lot of very excellent, very young baseball players in the major leagues.

Seems like, in that time, there has been a lot of talk about all the very excellent young baseball players in the majors, with Mike Trout and Bryce Harper leading the way. But our impressions are sometimes wrong, as analysis of the relevant data can reveal. So, to see if these impressions are right or wrong, I looked at the data.

The data agree, overwhelmingly.

Using Baseball-Reference.com, I looked at the highest-WAR seasons for players 22 and under from the last 40 years. Though rather than using WAR numbers outright, I scaled WAR to 150 games, to adjust for differences in playing time.  Because WAR behaves more like a cumulative statistic, like hits, than a rate statistic, like batting average, this effectively converts it to a rate statistic.  Because rate statistics are untrustworthy over small sample sizes, I only looked at seasons in which the player played in most of the games, so, at least 82 games.

Here are the top 40 such seasons from the last 40 years:

Year Player Lg Tm Age G WAR WAR/150
2012 Mike Trout AL LAA 20 139 10.8 11.7
2015 Bryce Harper NL WSN 22 153 9.9 9.7
1996 Alex Rodriguez AL SEA 20 146 9.4 9.7
1981 Rickey Henderson AL OAK 22 108 6.6 9.2
2013 Mike Trout AL LAA 21 157 8.9 8.5
1980 Rickey Henderson AL OAK 21 158 8.8 8.4
1998 Alex Rodriguez AL SEA 22 161 8.5 7.9
1983 Cal Ripken AL BAL 22 162 8.2 7.6
2014 Mike Trout AL LAA 22 157 7.9 7.5
2013 Yasiel Puig NL LAD 22 104 4.9 7.1
1998 Andruw Jones NL ATL 21 159 7.4 7.0
2015 Francisco Lindor AL CLE 21 99 4.6 7.0
1991 Ken Griffey AL SEA 21 154 7.1 6.9
2010 Jason Heyward NL ATL 20 142 6.4 6.8
2003 Hank Blalock AL TEX 22 143 6.4 6.7
2012 Giancarlo Stanton NL MIA 22 123 5.5 6.7
1982 Tom Brunansky AL MIN 21 127 5.6 6.6
2007 Troy Tulowitzki NL COL 22 155 6.8 6.6
2015 Manny Machado AL BAL 22 162 7.1 6.6
1999 Andruw Jones NL ATL 22 162 7.1 6.6
2005 Grady Sizemore AL CLE 22 158 6.6 6.3
2015 Carlos Correa AL HOU 20 99 4.1 6.2
2015 Mookie Betts AL BOS 22 145 6 6.2
2013 Manny Machado AL BAL 20 156 6.4 6.2
2001 Albert Pujols NL STL 21 161 6.6 6.1
1992 Ken Griffey AL SEA 22 142 5.8 6.1
1979 Paul Molitor AL MIL 22 140 5.6 6.0
1976 Willie Randolph AL NYY 21 125 5 6.0
1981 Tim Raines NL MON 21 88 3.5 6.0
1997 Alex Rodriguez AL SEA 21 141 5.6 6.0
1978 Robin Yount AL MIL 22 127 5 5.9
2008 Evan Longoria AL TBR 22 122 4.8 5.9
1987 Barry Bonds NL PIT 22 150 5.8 5.8
1977 Chet Lemon AL CHW 22 150 5.8 5.8
2002 Austin Kearns NL CIN 22 107 4.1 5.7
1978 Jack Clark NL SFG 22 156 5.9 5.7
2012 Jason Heyward NL ATL 22 158 5.8 5.5
2012 Bryce Harper NL WSN 19 139 5.1 5.5
2012 Brett Lawrie AL TOR 22 125 4.5 5.4
1979 Lou Whitaker AL DET 22 127 4.5 5.3

I then grouped these into 10 groups of 4 years. As it turns out, the period from 2012 to 2015 contains 5 of the top 10, 8 of the top 20, and 14 of the top 40 of these seasons, as shown by these charts. This, when the average group has 1 in the top 10, 2 in the top 20, and 4 in the top 40.

When the top 20 WAR seasons under 23 over last 40 years occurred

When the top 40 WAR seasons under 23 over last 40 years occurred

Of course, sometimes a single player produced more than one of these seasons. But these past four years also dominate in terms of the number of different young players on these lists. Here are all the players having top 40 seasons, listed under their 4-year groups, with their overall placements on the list next to their names. I’ve bolded those with top-20 seasons.

1976 – 1979 1980 – 1983 1984 – 1987
Paul Molitor (27) Rickey Henderson (4, 6) Barry Bonds (33)
Willie Randolph (28) Cal Ripken (8)
Robin Yount (31) Tom Brunansky (17)
Chet Lemon (34) Tim Raines (29)
Jack Clark (36)
Lou Whitaker (40)
1988 – 1991 1992 – 1995 1996 – 1999
Ken Griffey (13) Ken Griffey (26) Alex Rodriguez (3, 7, 30)
Andruw Jones (11, 20)
2000 – 2003 2004 – 2007 2008 – 2011
Hank Blalock (15) Troy Tulowitzki (18) Jason Heyward (14)
Albert Pujols (25) Grady Sizemore (21) Evan Longoria (32)
Austin Kearns (35)
2012 – 2015
Mike Trout (1, 5, 9)
Bryce Harper (2, 38)
Yasiel Puig (10)
Francisco Lindor (12)
Giancarlo Stanton (16)
Manny Machado (19, 24)
Carlos Correa (22)
Mookie Betts (23)
Jason Heyward (37)
Brett Lawrie (39)

Again, these past 4 years dominate.

Now that we know for certain that we’re experiencing a very special surge of young talent, the next thing to ask is, why? Has the surge in the amount of free analysis available (on the web and in ESPN in-depth commentary) over the last decade or so allowed parents to self-coach their youngsters more effectively? And is this finally coming to fruition? Or is this just a fluke? Is it a Cuban invasion? Or something else?

Xander Bogaerts back on pace to reach 200 hits, win AL batting title

Back on Wednesday morning, I showed that Xander Bogaerts and Miguel Cabrera were hitting at paces that would cause Bogaerts to (most likely) surpass Cabrera for the AL batting title. Though I didn’t mention it at the time, these projections also showed that he’d reach 200 hits even if he sat out a couple of games, and a few more than that if he played all the remaining games. After a pair of low-hit games knocked Bogaerts off that pace, his 3-for-4 performance last night has put him right back on it.

In trying to project future totals using “the pace at which a player is producing right now”, how many games do you use to determine what that pace is? The last 5? The last 10? 20?

I circumvent that question by using all of them … I calculate his pace of production over his last 5, 6, 7, 8, etc. games, then use that pace applied over the remaining number of games to be played to see what final numbers he’s headed for. This gives a big collection of possible final numbers; you then choose one in the middle.

On Wednesday I did that for Cabrera and Bogaerts using their paces of production as established by their last 8, 9, 10, etc. up to their last 20 games. That gave 13 paces of production for each player. I then applied these to their remaining games assuming they’d not sit out any games, and then again assuming they’d each sit out two games. I got these results:

If playing all remaining games
Bogaerts Cabrera
Low 0.327 0.324
Median 0.329 0.326
High 0.332 0.331
If sitting out two games
Bogaerts Cabrera
Low 0.327 0.326
Median 0.329 0.328
High 0.331 0.332

In all but one of these 26 projections, Bogaerts would end up with at least 200 hits.

I just updated these numbers, and now they look like this:

If playing all remaining games
Bogaerts Cabrera
Low 0.327 0.325
Median 0.329 0.326
High 0.330 0.332
If sitting out two games
Bogaerts Cabrera
Low 0.327 0.327
Median 0.328 0.328
High 0.329 0.332

Here are Bogaerts’ projected numbers of hits:

Bogaerts projected 2015 hits
# of recent games used If playing all games If sitting two games
20 204.0 200.8
19 203.3 200.2
18 203.0 200.0
17 203.3 200.2
16 203.6 200.5
15 204.0 200.8
14 205.1 201.7
13 204.9 201.5
12 203.8 200.7
11 204.4 201.1
10 204.0 200.8
9 204.7 201.3
8 204.3 201.0

Longer term projections (based on his last 40 or more games) almost all have him finishing with 200 hits exactly if he sits out 2 games, 203 hits if he plays all remaining games, and a .327 average.

If they play it out, and stay on pace, Bogaerts probably will win the batting title and will get to 200 hits.

Thanks to Baseball-Reference.com for the gamelog data I used for this article.

Xander Bogaerts on pace to surpass Miguel Cabrera for batting title

I’m a little frustrated with this article. I don’t think it gets me any closer to knowing how much of a shot Xander Bogaerts has at 2015 American League batting title. It just says, “it will be difficult”.

So I did some projections, to see what the numbers say. Of course, things have changed a bit since this article was published – the gap is now just 12 points instead of 18. There are 11 games left on the Tigers’ schedule, and 12 games left on the Red Sox’. I did two sets of projections. One assumes each player plays in all his team’s remaining games. The other assumes each player sits out two games.

In each case, I used the numbers of at bats and hits of each player in his last 8, 9, 10, etc. games, up to his last 20 games, as the basis for projecting his number of at bats and hits to come in his remaining games. I scaled these samples to the number of remaining games, added them to the current season totals, and calculated batting averages. So that made for 13 separate projections in each case.  The results:

Bogaerts projected 2015 AVG
# of recent games used If playing all games If sitting two games
20 0.330 0.329
19 0.329 0.329
18 0.330 0.329
17 0.329 0.328
16 0.328 0.327
15 0.327 0.327
14 0.328 0.327
13 0.328 0.328
12 0.330 0.329
11 0.332 0.331
10 0.331 0.330
9 0.329 0.328
8 0.330 0.329
Cabrera projected 2015 AVG
# of recent games used If playing all games If sitting two games
20 0.328 0.329
19 0.327 0.328
18 0.326 0.328
17 0.324 0.326
16 0.324 0.326
15 0.325 0.327
14 0.326 0.328
13 0.328 0.329
12 0.326 0.328
11 0.324 0.326
10 0.325 0.327
9 0.327 0.329
8 0.331 0.332

In both cases, because Bogaerts is hitting well right now and Cabrera is hitting poorly, the projections show that Bogaerts will probably surpass Cabrera and win the batting title. The charts pictured below show the lowest, highest, and median projections among the 13 projections produced for each case.

If playing all remaining games
Bogaerts Cabrera
Low 0.327 0.324
Median 0.329 0.326
High 0.332 0.331
If sitting out two games
Bogaerts Cabrera
Low 0.327 0.326
Median 0.329 0.328
High 0.331 0.332

If both players hit at their current paces the rest of the way, Xander Bogaerts will surpass Miguel Cabrera for the 2015 AL batting title.

Who should AL Player of the Month be, Encarnacion or Bradley?

To think about who should be the American League player of the Month for August, we could start by looking at those with the highest OPS on the month (and at least 50 plate appearances):

Player Team Pos G AB R H 2B 3B HR RBI BB SO SB CS AVG OBP SLG OPS▼
 Encarnacion, E TOR 1B 23 86 23 35 11 0 11 35 9 15 0 0 0.407 0.460 0.919 1.379
 Ortiz, D BOS DH 26 91 17 32 8 0 9 22 16 17 0 0 0.352 0.432 0.736 1.169
 Bradley, J BOS CF 26 79 23 28 9 3 5 23 11 24 3 0 0.354 0.429 0.734 1.163
 Donaldson, J TOR 3B 27 105 29 34 7 1 11 35 16 25 2 0 0.324 0.408 0.724 1.132
 Gutierrez, F SEA LF 19 62 12 21 4 0 7 20 4 19 0 0 0.339 0.388 0.742 1.130

Based on offense alone, you have to pick Encarnacion, though Ortiz, Bradley, and Donaldson all show very well here. But can defense close the gap? Not for Ortiz, the DH, but maybe for Jackie Bradley Jr., the defensive wiz in the outfield. Now I haven’t seen Encarnacion’s defense this month, but I have to wonder, how likely is he to have made plays at first base in August like this catch:

Bradley Jr.’s incredible catch

or this catch:

Statcast: Bradley’s great grab

or this throw:

Statcast: Bradley Jr. gets Bird

or this catch:

Must C: Bradley Jr.’s great grab

or this throw:

Bradley Jr. nabs Sanchez

or this catch:

Bradley runs in for catch

or this throw:

Bradley Jr.’s throw nabs Infante

or this catch and throw:

Bradley’s running catch

Given the game-changing, run-saving nature of Bradley’s defense so many times in August, that has to propel him squarely into a two-person discussion for who should be AL player of the Month for August.

Do you think the pick should be Encarnacion, Bradley, or someone else?